Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Front Toxicol ; 5: 1234498, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026843

RESUMEN

In silico toxicology protocols are meant to support computationally-based assessments using principles that ensure that results can be generated, recorded, communicated, archived, and then evaluated in a uniform, consistent, and reproducible manner. We investigated the availability of in silico models to predict the carcinogenic potential of pregabalin using the ten key characteristics of carcinogens as a framework for organizing mechanistic studies. Pregabalin is a single-species carcinogen producing only one type of tumor, hemangiosarcomas in mice via a nongenotoxic mechanism. The overall goal of this exercise is to test the ability of in silico models to predict nongenotoxic carcinogenicity with pregabalin as a case study. The established mode of action (MOA) of pregabalin is triggered by tissue hypoxia, leading to oxidative stress (KC5), chronic inflammation (KC6), and increased cell proliferation (KC10) of endothelial cells. Of these KCs, in silico models are available only for selected endpoints in KC5, limiting the usefulness of computational tools in prediction of pregabalin carcinogenicity. KC1 (electrophilicity), KC2 (genotoxicity), and KC8 (receptor-mediated effects), for which predictive in silico models exist, do not play a role in this mode of action. Confidence in the overall assessments is considered to be medium to high for KCs 1, 2, 5, 6, 7 (immune system effects), 8, and 10 (cell proliferation), largely due to the high-quality experimental data. In order to move away from dependence on animal data, development of reliable in silico models for prediction of oxidative stress, chronic inflammation, immunosuppression, and cell proliferation will be critical for the ability to predict nongenotoxic compound carcinogenicity.

2.
Comput Toxicol ; 222022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35844258

RESUMEN

Neurotoxicology is the study of adverse effects on the structure or function of the developing or mature adult nervous system following exposure to chemical, biological, or physical agents. The development of more informative alternative methods to assess developmental (DNT) and adult (NT) neurotoxicity induced by xenobiotics is critically needed. The use of such alternative methods including in silico approaches that predict DNT or NT from chemical structure (e.g., statistical-based and expert rule-based systems) is ideally based on a comprehensive understanding of the relevant biological mechanisms. This paper discusses known mechanisms alongside the current state of the art in DNT/NT testing. In silico approaches available today that support the assessment of neurotoxicity based on knowledge of chemical structure are reviewed, and a conceptual framework for the integration of in silico methods with experimental information is presented. Establishing this framework is essential for the development of protocols, namely standardized approaches, to ensure that assessments of NT and DNT based on chemical structures are generated in a transparent, consistent, and defendable manner.

3.
Comput Toxicol ; 212022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35368849

RESUMEN

Understanding the reliability and relevance of a toxicological assessment is important for gauging the overall confidence and communicating the degree of uncertainty related to it. The process involved in assessing reliability and relevance is well defined for experimental data. Similar criteria need to be established for in silico predictions, as they become increasingly more important to fill data gaps and need to be reasonably integrated as additional lines of evidence. Thus, in silico assessments could be communicated with greater confidence and in a more harmonized manner. The current work expands on previous definitions of reliability, relevance, and confidence and establishes a conceptional framework to apply those to in silico data. The approach is used in two case studies: 1) phthalic anhydride, where experimental data are readily available and 2) 4-hydroxy-3-propoxybenzaldehyde, a data poor case which relies predominantly on in silico methods, showing that reliability, relevance, and confidence of in silico assessments can be effectively communicated within Integrated approaches to testing and assessment (IATA).

4.
Comput Toxicol ; 202021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35368437

RESUMEN

Historically, identifying carcinogens has relied primarily on tumor studies in rodents, which require enormous resources in both money and time. In silico models have been developed for predicting rodent carcinogens but have not yet found general regulatory acceptance, in part due to the lack of a generally accepted protocol for performing such an assessment as well as limitations in predictive performance and scope. There remains a need for additional, improved in silico carcinogenicity models, especially ones that are more human-relevant, for use in research and regulatory decision-making. As part of an international effort to develop in silico toxicological protocols, a consortium of toxicologists, computational scientists, and regulatory scientists across several industries and governmental agencies evaluated the extent to which in silico models exist for each of the recently defined 10 key characteristics (KCs) of carcinogens. This position paper summarizes the current status of in silico tools for the assessment of each KC and identifies the data gaps that need to be addressed before a comprehensive in silico carcinogenicity protocol can be developed for regulatory use.

5.
Chem Res Toxicol ; 34(2): 189-216, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33140634

RESUMEN

Since 2009, the Tox21 project has screened ∼8500 chemicals in more than 70 high-throughput assays, generating upward of 100 million data points, with all data publicly available through partner websites at the United States Environmental Protection Agency (EPA), National Center for Advancing Translational Sciences (NCATS), and National Toxicology Program (NTP). Underpinning this public effort is the largest compound library ever constructed specifically for improving understanding of the chemical basis of toxicity across research and regulatory domains. Each Tox21 federal partner brought specialized resources and capabilities to the partnership, including three approximately equal-sized compound libraries. All Tox21 data generated to date have resulted from a confluence of ideas, technologies, and expertise used to design, screen, and analyze the Tox21 10K library. The different programmatic objectives of the partners led to three distinct, overlapping compound libraries that, when combined, not only covered a diversity of chemical structures, use-categories, and properties but also incorporated many types of compound replicates. The history of development of the Tox21 "10K" chemical library and data workflows implemented to ensure quality chemical annotations and allow for various reproducibility assessments are described. Cheminformatics profiling demonstrates how the three partner libraries complement one another to expand the reach of each individual library, as reflected in coverage of regulatory lists, predicted toxicity end points, and physicochemical properties. ToxPrint chemotypes (CTs) and enrichment approaches further demonstrate how the combined partner libraries amplify structure-activity patterns that would otherwise not be detected. Finally, CT enrichments are used to probe global patterns of activity in combined ToxCast and Tox21 activity data sets relative to test-set size and chemical versus biological end point diversity, illustrating the power of CT approaches to discern patterns in chemical-activity data sets. These results support a central premise of the Tox21 program: A collaborative merging of programmatically distinct compound libraries would yield greater rewards than could be achieved separately.


Asunto(s)
Bibliotecas de Moléculas Pequeñas/toxicidad , Pruebas de Toxicidad , Ensayos Analíticos de Alto Rendimiento , Humanos , Estados Unidos , United States Environmental Protection Agency
6.
Regul Toxicol Pharmacol ; 116: 104688, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32621976

RESUMEN

The assessment of skin sensitization has evolved over the past few years to include in vitro assessments of key events along the adverse outcome pathway and opportunistically capitalize on the strengths of in silico methods to support a weight of evidence assessment without conducting a test in animals. While in silico methods vary greatly in their purpose and format; there is a need to standardize the underlying principles on which such models are developed and to make transparent the implications for the uncertainty in the overall assessment. In this contribution, the relationship between skin sensitization relevant effects, mechanisms, and endpoints are built into a hazard assessment framework. Based on the relevance of the mechanisms and effects as well as the strengths and limitations of the experimental systems used to identify them, rules and principles are defined for deriving skin sensitization in silico assessments. Further, the assignments of reliability and confidence scores that reflect the overall strength of the assessment are discussed. This skin sensitization protocol supports the implementation and acceptance of in silico approaches for the prediction of skin sensitization.


Asunto(s)
Alérgenos/toxicidad , Haptenos/toxicidad , Medición de Riesgo/métodos , Alternativas a las Pruebas en Animales , Animales , Simulación por Computador , Células Dendríticas/efectos de los fármacos , Dermatitis por Contacto/etiología , Humanos , Queratinocitos/efectos de los fármacos , Linfocitos/efectos de los fármacos
7.
Environ Mol Mutagen ; 61(2): 276-290, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31633839

RESUMEN

The National Toxicology Program tested two common radiofrequency radiation (RFR) modulations emitted by cellular telephones in a 2-year rodent cancer bioassay that included interim assessments of additional animals for genotoxicity endpoints. Male and female Hsd:Sprague Dawley SD rats and B6C3F1/N mice were exposed from Gestation day 5 or Postnatal day 35, respectively, to code division multiple access (CDMA) or global system for mobile modulations over 18 hr/day, at 10-min intervals, in reverberation chambers at specific absorption rates of 1.5, 3, or 6 W/kg (rats, 900 MHz) or 2.5, 5, or 10 W/kg (mice, 1,900 MHz). After 19 (rats) or 14 (mice) weeks of exposure, animals were examined for evidence of RFR-associated genotoxicity using two different measures. Using the alkaline (pH > 13) comet assay, DNA damage was assessed in cells from three brain regions, liver cells, and peripheral blood leukocytes; using the micronucleus assay, chromosomal damage was assessed in immature and mature peripheral blood erythrocytes. Results of the comet assay showed significant increases in DNA damage in the frontal cortex of male mice (both modulations), leukocytes of female mice (CDMA only), and hippocampus of male rats (CDMA only). Increases in DNA damage judged to be equivocal were observed in several other tissues of rats and mice. No significant increases in micronucleated red blood cells were observed in rats or mice. In conclusion, these results suggest that exposure to RFR is associated with an increase in DNA damage. Environ. Mol. Mutagen. 61:276-290, 2020. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Teléfono Celular , Daño del ADN , Ondas de Radio/efectos adversos , Animales , Ensayo Cometa , Femenino , Masculino , Ratones , Pruebas de Micronúcleos , Ratas , Ratas Sprague-Dawley
8.
ALTEX ; 36(3): 505, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31329253

RESUMEN

In this manuscript, which appeared in ALTEX 35 , 235-253 ( doi:10.14573/altex.1712182 ), the Acknowledgements should read: This work was supported by the Land BW, the Doerenkamp-Zbinden Foundation, the DFG (RTG1331, KoRS-CB), the BMBF (NeuriTox), and it has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 681002 (EU-ToxRisk).

9.
Chem Res Toxicol ; 32(7): 1384-1401, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31243984

RESUMEN

Genotoxicity is a critical component of a comprehensive toxicological profile. The Tox21 Program used five quantitative high-throughput screening (qHTS) assays measuring some aspect of DNA damage/repair to provide information on the genotoxic potential of over 10 000 compounds. Included were assays detecting activation of p53, increases in the DNA repair protein ATAD5, phosphorylation of H2AX, and enhanced cytotoxicity in DT40 cells deficient in DNA-repair proteins REV3 or KU70/RAD54. Each assay measures a distinct component of the DNA damage response signaling network; >70% of active compounds were detected in only one of the five assays. When qHTS results were compared with results from three standard genotoxicity assays (bacterial mutation, in vitro chromosomal aberration, and in vivo micronucleus), a maximum of 40% of known, direct-acting genotoxicants were active in one or more of the qHTS genotoxicity assays, indicating low sensitivity. This suggests that these qHTS assays cannot in their current form be used to replace traditional genotoxicity assays. However, despite the low sensitivity, ranking chemicals by potency of response in the qHTS assays revealed an enrichment for genotoxicants up to 12-fold compared with random selection, when allowing a 1% false positive rate. This finding indicates these qHTS assays can be used to prioritize chemicals for further investigation, allowing resources to focus on compounds most likely to induce genotoxic effects. To refine this prioritization process, models for predicting the genotoxicity potential of chemicals that were active in Tox21 genotoxicity assays were constructed using all Tox21 assay data, yielding a prediction accuracy up to 0.83. Data from qHTS assays related to stress-response pathway signaling (including genotoxicity) were the most informative for model construction. By using the results from qHTS genotoxicity assays, predictions from models based on qHTS data, and predictions from commercial bacterial mutagenicity QSAR models, we prioritized Tox21 chemicals for genotoxicity characterization.


Asunto(s)
Mutágenos/análisis , Animales , Células CHO , Línea Celular Tumoral , Pollos , Cricetulus , ADN/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Bases de Datos de Compuestos Químicos , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Mutágenos/farmacología , Curva ROC
10.
Nat Commun ; 10(1): 305, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30659182

RESUMEN

DNA methylation is an essential epigenetic process in mammals, intimately involved in gene regulation. Here we address the extent to which genetics, sex, and pregnancy influence genomic DNA methylation by intercrossing 2 inbred mouse strains, C57BL/6N and C3H/HeN, and analyzing DNA methylation in parents and offspring using whole-genome bisulfite sequencing. Differential methylation across genotype is detected at thousands of loci and is preserved on parental alleles in offspring. In comparison of autosomal DNA methylation patterns across sex, hundreds of differentially methylated regions are detected. Comparison of animals with different histories of pregnancy within our study reveals a CpG methylation pattern that is restricted to female animals that had borne offspring. Collectively, our results demonstrate the stability of CpG methylation across generations, clarify the interplay of epigenetics with genetics and sex, and suggest that CpG methylation may serve as an epigenetic record of life events in somatic tissues at loci whose expression is linked to the relevant biology.


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética , Preñez/genética , Animales , Islas de CpG , Metilación de ADN/fisiología , Femenino , Masculino , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Embarazo , Preñez/fisiología , Factores Sexuales , Especificidad de la Especie , Secuenciación Completa del Genoma
11.
Toxicol Sci ; 167(1): 6-14, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30496580

RESUMEN

The National Toxicology Program (NTP) receives requests to evaluate chemicals with potential to cause adverse health effects, including developmental neurotoxicity (DNT). Some recent requests have included classes of chemicals such as flame retardants, polycyclic aromatic compounds, perfluoroalkyl substances, and bisphenol A analogs with approximately 20-50 compounds per class, many of which include commercial mixtures. However, all the compounds within a class cannot be tested using traditional DNT animal testing guideline studies due to resource and time limitations. Hence, a rapid and biologically relevant screening approach is required to prioritize compounds for further in vivo testing. Because neurodevelopment is a complex process involving multiple distinct cellular processes, one assay will unlikely address the complexity. Hence, the NTP sought to characterize a battery of in vitro and alternative animal assays to quantify chemical effects on a variety of neurodevelopmental processes. A culmination of this effort resulted in a NTP-hosted collaborative project with approximately 40 participants spanning across domains of academia, industry, government, and regulatory agencies; collaborators presented data on cell-based assays and alternative animal models that was generated using a targeted set of compounds provided by the NTP. The NTP analyzed the assay results using benchmark concentration (BMC) modeling to be able to compare results across the divergent assays. The results were shared with the contributing researchers on a private web application during the workshop, and are now publicly available. This article highlights the overview and goals of the project, and describes the NTP's approach in creating the chemical library, development of NTPs data analysis strategy, and the structure of the web application. Finally, we discuss key issues with emphasis on the utility of this approach, and knowledge gaps that need to be addressed for its use in regulatory decision making.


Asunto(s)
Alternativas a las Pruebas en Animales/métodos , Contaminantes Ambientales/clasificación , Contaminantes Ambientales/toxicidad , Programas de Gobierno , Síndromes de Neurotoxicidad/etiología , Toxicología , Alternativas a las Pruebas en Animales/tendencias , Animales , Guías como Asunto , Desarrollo de Programa , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/toxicidad , Pruebas de Toxicidad , Toxicología/métodos , Toxicología/tendencias , Estados Unidos
12.
Neurotoxicol Teratol ; 70: 40-50, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30312655

RESUMEN

Following the voluntary phase-out of brominated flame retardants (BFRs) due to their environmental persistence and toxicity, the organophosphorus flame retardants (OPFRs) are emerging replacements. However, there is limited information on the potential human health effects of the OPFRs. Zebrafish embryos are a viable vertebrate model organism with many advantages for high throughput testing toward human hazard assessment. We utilized zebrafish embryos to assess developmental toxicity, neurotoxicity, cardiotoxicity and hepatotoxicity, of eight replacement OPFRs: (triphenyl phosphate [TPHP], isopropylated phenyl phosphate [IPP], 2-ethylhexyl diphenyl phosphate [EHDP], tert-butylated phenyl diphenyl phosphate [BPDP], trimethyl phenyl phosphate [TMPP], isodecyl diphenyl phosphate [IDDP], tris(1,3-dichloroisopropyl) phosphate [TDCIPP], and tris(2-chloroethyl) phosphate [TCEP]) and two BFRs (3,3',5,5'- tetrabromobisphenol A [TBBPA] and 2,2'4,4'-brominated diphenyl ether [BDE-47]). To determine potential effects on teratogenicity, embryos were exposed to flame retardants (FRs) at 4 h post fertilization (hpf) to 4 days post fertilization (dpf) and morphological alterations and corresponding survival were evaluated at 2 and 4 dpf. Internal concentrations were measured in larvae used in this assay by liquid chromatography-mass spectrometry. Locomotor activity was assessed in larvae treated for 48 h (from 3 dpf to 5 dpf), followed by hepatotoxicity evaluation. Finally, alterations in heart rate and rhythmicity were assessed to determine cardiotoxicity in 48 hpf embryos exposed to compounds for 3 h. Results suggest that several OPFRs (BPDP, EHDP; IPP, TMPP; TPHP and TDCIPP) produced adverse effects in multiple target organs at concentrations comparable to the two BFRs. As these OPFRs have the capacity to disrupt an integrated vertebrate model, they potentially have the capacity to affect mammalian biology. Then, we compared the lowest effective levels (LEL) in zebrafish with estimated or measured human plasma concentrations using biomonitoring data (human plasma, breast milk, handwipe samples and house dust) and a high throughput toxicokinetic (HTTK) model. Results indicate that for some compounds, the nominal LELs were within the range of human exposures, while internal LELs in zebrafish are above internal exposures in humans. These findings demonstrate the value of the zebrafish model as a relevant screening tool and support the need for further hazard characterization of the OPFRs.


Asunto(s)
Desarrollo Embrionario/efectos de los fármacos , Retardadores de Llama/toxicidad , Organofosfatos/toxicidad , Compuestos Organofosforados/toxicidad , Animales , Cardiotoxicidad/etiología , Humanos , Síndromes de Neurotoxicidad/etiología , Organofosfatos/farmacología , Pez Cebra
13.
Environ Health Perspect ; 126(7): 077010, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30059008

RESUMEN

BACKGROUND: A central challenge in toxicity testing is the large number of chemicals in commerce that lack toxicological assessment. In response, the Tox21 program is re-focusing toxicity testing from animal studies to less expensive and higher throughput in vitro methods using target/pathway-specific, mechanism-driven assays. OBJECTIVES: Our objective was to use an in-depth mechanistic study approach to prioritize and characterize the chemicals affecting mitochondrial function. METHODS: We used a tiered testing approach to prioritize for more extensive testing 622 compounds identified from a primary, quantitative high-throughput screen of 8,300 unique small molecules, including drugs and industrial chemicals, as potential mitochondrial toxicants by their ability to significantly decrease the mitochondrial membrane potential (MMP). Based on results from secondary MMP assays in HepG2 cells and rat hepatocytes, 34 compounds were selected for testing in tertiary assays that included formation of reactive oxygen species (ROS), upregulation of p53 and nuclear erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE), mitochondrial oxygen consumption, cellular Parkin translocation, and larval development and ATP status in the nematode Caenorhabditis elegans. RESULTS: A group of known mitochondrial complex inhibitors (e.g., rotenone) and uncouplers (e.g., chlorfenapyr), as well as potential novel complex inhibitors and uncouplers, were detected. From this study, we identified four not well-characterized potential mitochondrial toxicants (lasalocid, picoxystrobin, pinacyanol, and triclocarban) that merit additional in vivo characterization. CONCLUSIONS: The tier-based approach for identifying and mechanistically characterizing mitochondrial toxicants can potentially reduce animal use in toxicological testing. https://doi.org/10.1289/EHP2589.


Asunto(s)
Contaminantes Ambientales/toxicidad , Sustancias Peligrosas/toxicidad , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Pruebas de Toxicidad/métodos , Animales , Células Hep G2 , Hepatocitos , Humanos , Ratas , Pruebas de Toxicidad/instrumentación
14.
ALTEX ; 35(2): 235-253, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29423527

RESUMEN

The (developmental) neurotoxicity hazard is still unknown for most chemicals. Establishing a test battery covering most of the relevant adverse outcome pathways may close this gap, without requiring a huge animal experimentation program. Ideally, each of the assays would cover multiple mechanisms of toxicity. One candidate test is the human LUHMES cell-based NeuriTox test. To evaluate its readiness for larger-scale testing, a proof of concept library assembled by the U.S. National Toxicology Program (NTP) was screened. Of the 75 unique compounds, seven were defined as specifically neurotoxic after the hit-confirmation phase and additional ten compounds were generally cytotoxic within the concentration range of up to 20 micromolar. As complementary approach, the library was screened in the PeriTox test, which identifies toxicants affecting the human peripheral nervous system. Of the eight PeriTox hits, five were similar to the NeuriTox hits: rotenone, colchicine, diethylstilbestrol, berberine chloride, and valinomycin. The unique NeuriTox hit, methyl-phenylpyridinium (MPP+) is known from in vivo studies to affect only dopaminergic neurons (which LUHMES cells are). Conversely, the known peripheral neurotoxicant acrylamide was picked up in the PeriTox, but not in the NeuriTox assay. All of the five common hits had also been identified in the published neural crest migration (cMINC) assay, while none of them emerged as cardiotoxicant in a previous screen using the same library. These comparative data suggest that complementary in vitro tests can pick up a broad range of toxicants, and that multiple test results might help to predict organ specificity patterns.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Pruebas de Toxicidad/métodos , Células Cultivadas , Humanos
15.
Environ Mol Mutagen ; 58(7): 494-507, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28714573

RESUMEN

Genotoxicity potential is a critical component of any comprehensive toxicological profile. Compounds that induce DNA or chromosomal damage often activate p53, a transcription factor essential to cell cycle regulation. Thus, within the US Tox21 Program, we screened a library of ∼10,000 (∼8,300 unique) environmental compounds and drugs for activation of the p53-signaling pathway using a quantitative high-throughput screening assay employing HCT-116 cells (p53+/+ ) containing a stably integrated ß-lactamase reporter gene under control of the p53 response element (p53RE). Cells were exposed (-S9) for 16 hr at 15 concentrations (generally 1.2 nM to 92 µM) three times, independently. Excluding compounds that failed analytical chemistry analysis or were suspected of inducing assay interference, 365 (4.7%) of 7,849 unique compounds were concluded to activate p53. As part of an in-depth characterization of our results, we first compared them with results from traditional in vitro genotoxicity assays (bacterial mutation, chromosomal aberration); ∼15% of known, direct-acting genotoxicants in our library activated the p53RE. Mining the Comparative Toxicogenomics Database revealed that these p53 actives were significantly associated with increased expression of p53 downstream genes involved in DNA damage responses. Furthermore, 53 chemical substructures associated with genotoxicity were enriched in certain classes of p53 actives, for example, anthracyclines (antineoplastics) and vinca alkaloids (tubulin disruptors). Interestingly, the tubulin disruptors manifested unusual nonmonotonic concentration response curves suggesting activity through a unique p53 regulatory mechanism. Through the analysis of our results, we aim to define a role for this assay as one component of a comprehensive toxicological characterization of large compound libraries. Environ. Mol. Mutagen. 58:494-507, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Daño del ADN , Contaminantes Ambientales/toxicidad , Ensayos Analíticos de Alto Rendimiento/métodos , Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Proteína p53 Supresora de Tumor/metabolismo , Activación Metabólica , Técnicas de Cultivo de Célula , Contaminantes Ambientales/química , Contaminantes Ambientales/clasificación , Interacción Gen-Ambiente , Células HCT116 , Humanos , Mutágenos/química , Mutágenos/clasificación , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Proteína p53 Supresora de Tumor/genética
17.
PLoS One ; 12(5): e0177902, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28531190

RESUMEN

Cytotoxicity is a commonly used in vitro endpoint for evaluating chemical toxicity. In support of the U.S. Tox21 screening program, the cytotoxicity of ~10K chemicals was interrogated at 0, 8, 16, 24, 32, & 40 hours of exposure in a concentration dependent fashion in two cell lines (HEK293, HepG2) using two multiplexed, real-time assay technologies. One technology measures the metabolic activity of cells (i.e., cell viability, glo) while the other evaluates cell membrane integrity (i.e., cell death, flor). Using glo technology, more actives and greater temporal variations were seen in HEK293 cells, while results for the flor technology were more similar across the two cell types. Chemicals were grouped into classes based on their cytotoxicity kinetics profiles and these classes were evaluated for their associations with activity in the Tox21 nuclear receptor and stress response pathway assays. Some pathways, such as the activation of H2AX, were associated with the fast-responding cytotoxicity classes, while others, such as activation of TP53, were associated with the slow-responding cytotoxicity classes. By clustering pathways based on their degree of association to the different cytotoxicity kinetics labels, we identified clusters of pathways where active chemicals presented similar kinetics of cytotoxicity. Such linkages could be due to shared underlying biological processes between pathways, for example, activation of H2AX and heat shock factor. Others involving nuclear receptor activity are likely due to shared chemical structures rather than pathway level interactions. Based on the linkage between androgen receptor antagonism and Nrf2 activity, we surmise that a subclass of androgen receptor antagonists cause cytotoxicity via oxidative stress that is associated with Nrf2 activation. In summary, the real-time cytotoxicity screen provides informative chemical cytotoxicity kinetics data related to their cytotoxicity mechanisms, and with our analysis, it is possible to formulate mechanism-based hypotheses on the cytotoxic properties of the tested chemicals.


Asunto(s)
Contaminantes Ambientales/toxicidad , Histonas/metabolismo , Bibliotecas de Moléculas Pequeñas/clasificación , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Membrana Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Análisis por Conglomerados , Bases de Datos de Compuestos Químicos , Regulación de la Expresión Génica , Células HEK293 , Células Hep G2 , Humanos , Estrés Oxidativo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Pruebas de Toxicidad
18.
Toxicol Appl Pharmacol ; 322: 60-74, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28259702

RESUMEN

An important target area for addressing data gaps through in vitro screening is the detection of potential cardiotoxicants. Despite the fact that current conservative estimates relate at least 23% of all cardiovascular disease cases to environmental exposures, the identities of the causative agents remain largely uncharacterized. Here, we evaluate the feasibility of a combinatorial in vitro/in silico screening approach for functional and mechanistic cardiotoxicity profiling of environmental hazards using a library of 69 representative environmental chemicals and drugs. Human induced pluripotent stem cell-derived cardiomyocytes were exposed in concentration-response for 30min or 24h and effects on cardiomyocyte beating and cellular and mitochondrial toxicity were assessed by kinetic measurements of intracellular Ca2+ flux and high-content imaging using the nuclear dye Hoechst 33342, the cell viability marker Calcein AM, and the mitochondrial depolarization probe JC-10. More than half of the tested chemicals exhibited effects on cardiomyocyte beating after 30min of exposure. In contrast, after 24h, effects on cell beating without concomitant cytotoxicity were observed in about one third of the compounds. Concentration-response data for in vitro bioactivity phenotypes visualized using the Toxicological Prioritization Index (ToxPi) showed chemical class-specific clustering of environmental chemicals, including pesticides, flame retardants, and polycyclic aromatic hydrocarbons. For environmental chemicals with human exposure predictions, the activity-to-exposure ratios between modeled blood concentrations and in vitro bioactivity were between one and five orders of magnitude. These findings not only demonstrate that some ubiquitous environmental pollutants might have the potential at high exposure levels to alter cardiomyocyte function, but also indicate similarities in the mechanism of these effects both within and among chemicals and classes.


Asunto(s)
Cardiotoxinas/toxicidad , Supervivencia Celular/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología , Técnicas de Cultivo de Órganos
19.
Environ Health Perspect ; 125(4): 623-633, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27384688

RESUMEN

BACKGROUND: The National Research Council's vision for toxicity testing in the 21st century anticipates that points of departure (PODs) for establishing human exposure guidelines in future risk assessments will increasingly be based on in vitro high-throughput screening (HTS) data. OBJECTIVES: The aim of this study was to compare different PODs for HTS data. Specifically, benchmark doses (BMDs) were compared to the signal-to-noise crossover dose (SNCD), which has been suggested as the lowest dose applicable as a POD. METHODS: Hill models were fit to > 10,000 in vitro concentration-response curves, obtained for > 1,400 chemicals tested as part of the U.S. Tox21 Phase I effort. BMDs and lower confidence limits on the BMDs (BMDLs) corresponding to extra effects (i.e., changes in response relative to the maximum response) of 5%, 10%, 20%, 30%, and 40% were estimated for > 8,000 curves, along with BMDs and BMDLs corresponding to additional effects (i.e., absolute changes in response) of 5%, 10%, 15%, 20%, and 25%. The SNCD, defined as the dose where the ratio between the additional effect and the difference between the upper and lower bounds of the two-sided 90% confidence interval on absolute effect was 1, 0.67, and 0.5, respectively, was also calculated and compared with the BMDLs. RESULTS: The BMDL40, BMDL25, and BMDL18, defined in terms of extra effect, corresponded to the SNCD1.0, SNCD0.67, and SNCD0.5, respectively, at the median. Similarly, the BMDL25, BMDL17, and BMDL13, defined in terms of additional effect, corresponded to the SNCD1.0, SNCD0.67, and SNCD0.5, respectively, at the median. CONCLUSIONS: The SNCD may serve as a reference level that guides the determination of standardized BMDs for risk assessment based on HTS concentration-response data. The SNCD may also have application as a POD for low-dose extrapolation.


Asunto(s)
Exposición a Riesgos Ambientales/normas , Benchmarking , Relación Dosis-Respuesta a Droga , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Ensayos Analíticos de Alto Rendimiento , Humanos , Modelos Teóricos , Medición de Riesgo/métodos , Pruebas de Toxicidad
20.
Toxicol Sci ; 155(1): 22-31, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27780885

RESUMEN

Future Tox III, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in November 2015. Building upon Future Tox I and II, Future Tox III was focused on developing the high throughput risk assessment paradigm and taking the science of in vitro data and in silico models forward to explore the question-what progress is being made to address challenges in implementing the emerging big-data toolbox for risk assessment and regulatory decision-making. This article reports on the outcome of the workshop including 2 examples of where advancements in predictive toxicology approaches are being applied within Federal agencies, where opportunities remain within the exposome and AOP domains, and how collectively the toxicology community across multiple sectors can continue to bridge the translation from historical approaches to Tox21 implementation relative to risk assessment and regulatory decision-making.


Asunto(s)
Toxicología , Animales , Humanos , Técnicas In Vitro , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...